Ferring Pharmaceuticals announced the signing of an agreement giving the company the option to secure global commercialisation rights to nadofaragene firadenovec/Syn3 (rAd-IFN/Syn3), a novel gene therapy being developed by FKD Therapies Oy (FKD) as a treatment for patients with high-grade non-muscle invasive bladder cancer (NMIBC), who are unresponsive to Bacillus Calmette-Guérin (BCG) therapy. This option is exercisable on marketing approval from the US FDA. Ferring will create a new US oncology division with the specialist knowledge and presence to introduce novel advanced therapies to the market.
rAd-IFN/Syn3 is currently undergoing Phase 3 development in the US under the sponsorship of Finnish gene therapy specialists FKD. The results of the earlier Phase 2 trial, published in the Journal of Clinical Oncology, reported 35% of BCG unresponsive NMIBC bladder cancer patients given one dose of rAd-IFN/Syn3 every three months, were free of high-grade disease at one year. The ongoing Phase 3 study is designed to establish the efficacy and safety of the product. rAd-IFN/Syn3 has been awarded Fast Track and Breakthrough Therapy designations by the FDA.
“We are excited about the potential to commercialise rAd-IFN/Syn3, a novel gene therapy for bladder cancer patients,” said Michel Pettigrew, President of the Executive Board and Chief Operating Officer, Ferring Pharmaceuticals. “The gene therapy sector is growing rapidly and building a presence in this specialised area is a very positive opportunity for Ferring.”
Bladder cancer is one of the most frequently occurring cancers with an estimated 430,000 new cases being reported worldwide each year. It is the fourth most common cancer in men in the US and is the most expensive cancer to treat on a life-time basis, with a high burden on patients, their relatives and healthcare systems4. In high-grade NMIBC patients, BCG is the gold standard treatment and although effective, over 60% of cases eventually re-occur. The outcome for such patients is poor, with total cystectomy (complete removal of the bladder) to prevent the cancer spreading to other organs generally being the next treatment option. As such, the BCG unresponsive population is one of high unmet clinical need.
“Today, bladder cancer patients have very limited medical options and new treatments that delay or prevent total removal of the bladder and improve clinical outcomes are urgently needed for patients,” said Professor Klaus Dugi, Chief Medical Officer, Ferring Pharmaceuticals. “Phase 2 clinical results for rAd-IFN/Syn3 were very encouraging and we look forward to the Phase 3 data.”
Gene therapy is one of a new class of therapeutic treatments known as advanced therapy medicinal products. rAd-IFN/Syn3 is built on adenoviral vector technology, a non-integrating vector, and results in enhanced expression of the therapeutic protein interferon alfa 2b. To date, it has completed three clinical trials in the US.