Fate Therapeutics Announces Exclusive License Agreement with Baylor College of Medicine for Rejection-resistant iPSC-derived Cellular Therapies
Fate Therapeutics, Inc. announced that the Company entered into an exclusive license agreement with Baylor College of Medicine covering alloimmune defense receptors, a first-in-class approach that renders off-the-shelf allogeneic cell products resistant to host immune rejection. Preclinical studies published in the journal Nature Biotechnology demonstrate that allogeneic cells engineered with a novel alloimmune defense receptor (ADR) are protected from both T- and NK-cell mediated rejection, and provide proof-of-concept that ADR-expressing allogeneic cell therapies can durably persist in immunocompetent recipients.
“Allogeneic cell therapy requires a patient to endure systemic lympho-conditioning to suppress the immune system and mitigate cellular rejection, often resulting in severe blood cell deficiencies and related toxicities. There is great interest in strategies that enable allogeneic cells to overcome host immunity and evade immune rejection while maintaining a patient’s functional hematopoietic system,” said Scott Wolchko, President and Chief Executive Officer of Fate Therapeutics. “The published preclinical data provide compelling evidence that allogeneic cell therapies armed with novel alloimmune defense receptors can effectively abrogate both T- and NK-cell rejection responses and can persist and remain functional in immunocompetent patients.”
ADRs are synthetic receptors that selectively recognize cell surface receptors, such as 4-1BB, that are uniquely expressed on activated lymphocytes, which are responsible for host immune rejection. The published preclinical findings show that the arming of allogeneic T cells with an ADR selectively eliminates alloreactive T and NK cells, while sparing resting lymphocytes. Importantly, in in vivo preclinical models of cancer, allogeneic T cells expressing both an ADR and a CD19-targeted chimeric antigen receptor (CAR) demonstrated increased expansion and persistence, resulting in sustained tumor eradication and a long-term survival benefit compared to conventional CD19-targeted CAR T cells.
“There is tremendous promise for the use of off-the-shelf allogeneic cells as replacement therapy. One of the most significant barriers to overcome is host immunity, which can prevent the engraftment of allogeneic cells and the long-term replacement of a patient’s damaged or dysfunctional cells,” said Maksim Mamonkin, Ph.D., Assistant Professor, Center for Cell and Gene Therapy, Baylor College of Medicine and the senior author on the Nature Biotechnology publication. “We are excited for Fate Therapeutics to explore the use of alloimmune defense receptors in the development of rejection-resistant, iPSC-derived cellular therapies.”